NIST E-Authentication Guidance: Can we add KBA?

NIST KBA Symposium
Feb. 9, 2004
Bill Burr
william.burr@nist.gov

NIST E-Authentication Tech Guidance

- OMB Guidance to agencies on E-Authentication
- OMB Memorandum M-04-04, E-Authentication Guidance for Federal Agencies, Dec. 16, 2003
- http://www.whitehouse.gov/omb/memoranda/fy04/m04-04.pdf
- About identity authentication, not authorization or access control
- NIST SP800-63: Recommendation for Electronic Authentication
- Companion to OMB e-Authentication guidance
— Draft for comment at: http://csrc.nist.gov/eauth
- Comment period ends: March 15
- Covers conventional token based remote authentication
- Does not cover Knowlege Based Authentication (KBA)

Assurance Levels

- OMB guidance defines 4 assurance levels
- Level 1 little or no confidence in asserted identity's validity
- Level 2: Some confidence in asserted identity's validity
- Level 3: High confidence in asserted identity's validity
- Level 4: Very high confidence in asserted identity's validity
- Needed assurance level determined for each type of transaction by the risks and consequences of authentication error with respect to:
- Inconvenience, distress \& damage to reputation
- Financial loss
- Harm to agency programs or reputation
- Civil or criminal violations
- Personal safety

Technical Guidance Constraints

- Technology neutral (if possible)
- Required (if practical) by e-Sign, Paperwork Elimination and other laws
- Premature to take sides in web services wars
- Difficult: many technologies, apples and oranges comparisons
- Practical with COTS technology
- To serve public must take advantage of existing solutions and relationships
- Only for remote network authentication
- Not in person, therefore not about biometrics
- Only about identity authentication
- Not about attributes, authorization, or access control
- This is inherited from OMB guidance
- Agency owns system \& makes access control decisions

Personal Authentication Factors

- Something you know
- A password
- Something you have: a token
- for remote authentication typically a key
- Soft token: a copy on a disk drive
- Hard token: in a special hardware cryptographic device
- Something you are
- A biometric
- But biometrics don't work well in remote authentication protocols, because you can't keep a biometric secret

Remote Authentication Protocols

- Conventional, secure, remote authentication protocols all depend on proving possession of some secret "token"
- Remote authentication protocols assume that you can keep a secret
- Private key
- Symmetric key
- Password
- Can be "secure" against defined attacks if you keep the secret
- Amount of work required in attack is known
- Make the amount of work work impractically large
- Hard for people to remember passwords that are "strong" enough to make the attack impractical

Multifactor Remote Authentication

- The more factors, the stronger the authentication
- Multifactor remote authentication typically relies on a cryptographic key
- Key is protected by a password or a biometric
- To activate the key or complete the authentication, you need to know the password, or poses the biometric
- Works best when the key is held in a hardware device (a "hard token")
- Ideally a biometric reader is built into the token, or a password is entered directly into token

E-Authentication Model

- A claimant proves his/her identity to a verifier by proving possession of a token, possibly in conjunction with electronic credentials that bind the identity and the token. The verifier may then inform a relying party of the claimant's identity with an assertion. The claimant got his/her token and credentials from a Credentials Service Provider (CSP), after proving his identity to a Registration Authority (RA). The roles of the verifier, relying party, CSP and RA may be combined in various combinations.
- Claimant: Wants to prove his or her identity
- Electronic credentials: Bind an identity or attribute to a token or something associated with a claimant
- Token: Secret used in an authentication protocol
- Verifier: verifies the claimant's identity by proof of possession of a token
- Relying party: Relies on an identity
- Assertion: Passes information about a claimant from a verifier to a relying party
- Credentials Service Provider (CSP): Issues electronic credentials and registers or issues tokens
- Registration Authority (RA): Identity proofs the subscriber

Tokens

- Hard token
- Cryptographic key in a hardware device
- FIPS 140 level 2, with level 3 physical security
- Key is unlocked by password or biometrics
- Soft token
- Cryptographic key encrypted under password
- FIPS 140 Level 1 or higher crypto module
- One-time password device (1TPD)
- Symmetric key in a hardware device with display - FIPS 140 level 1
- Generates password from key plus time or counter
- User typically inputs password through browser
- Zero Knowledge Password
- Strong password used with special "zero knowledge" protocol
- Password
- Password or PIN with conventional protocol

Token Type by Level

Allowed Token Types	Assurance Level			
	1	2	3	4
Hard crypto token	\checkmark	\checkmark	\checkmark	\checkmark
Soft crypto token	\checkmark	$\sqrt{ }$	\checkmark	
Zero knowledge password	\checkmark	$\sqrt{ }$	\checkmark	
One-time Password Device	\checkmark	$\sqrt{ }$	\checkmark	
Strong password	\checkmark	$\sqrt{ }$		
PIN	\checkmark			

Protections by Level

	Assurance Level				
	1	2	3		4
Protection Against			Soft/ZKP	1TPD	
Eavesdropper		\checkmark	\checkmark	\checkmark	\checkmark
Replay	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
On-line guessing	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Verifier Impersonation			\checkmark	\checkmark	\checkmark
Man-in-the-middle			\checkmark	$*$	\checkmark
Session Hijacking			\checkmark		\checkmark

* Protection for shared secret only

Auth. Protocol Type by Level

Authentication Protocol Types	Assurance Level			
	1	2	3	4
Private key PoP	\checkmark	\checkmark	\checkmark	$\sqrt{ }$
Symmetric key PoP	\checkmark	$\sqrt{ }$	\checkmark	$\sqrt{ }$
Zero knowledge password	\checkmark	$\sqrt{ }$	\checkmark	
Tunneled password	\checkmark	$\sqrt{ }$		
Challenge-reply password	\checkmark			

ID Proofing

- Level 1
- Self assertion, minimal records
- Level 2
- On-line, more or less instant gratification may be possible
- Close the loop by mail, phone or (possibly) e-mail
- Level 3
- in-person registration not required
-Close the loop by mail or phone
- Level 4
- In person proofing
-Record a biometric
- Can later prove who got the token
- Consistent with FICC Common Certificate Policy

PKI \& E-Auth

- PKI solutions widely available
- Can use TLS with client certs. for levels 3 \& 4
- May be the predominant solution for levels $3 \& 4$ in gov.
- Federal Identity Credentialing Committee
- Common Credential and Federal Identity Card
- Common certificate policy and shared service providers
- Gov. Smart Card Interoperability Standard (GSC-IS)
- Fed. Bridge CA and Fed. Policy Authority are PKI vehicle
- Non-PKI level 3 \& 4 solutions
- One-time password devices in common use - can meet level 3
- Cell phones could be a good 1TPD platform
- Zero knowledge passwords for level 3 - not widely implemented
- Level 4 could be done with symmetric key tokens

Passwords

- Password is a secret character string you commit to memory.
- Secret and memory are the key words here
- As a practical matter we often do write our passwords down
- A password is really a (weak) key
- People can't remember good keys
- We all live in Password Hell - too many passwords
- And they try to make us change them all the time
- In E-auth we're only concerned with on-line authentication
- Assume that the verifier is secure and can impose rules to detect or limit attacks
- What is the "strength" of a password?

Password Strength

- Over the life of the password the probability of an attacker with no a priori knowledge of the password finding a given user's password by an in-band attack shall not exceed
— one in $2^{16}(1 / 65,563)$ for Level 2
— one in $2^{11}(1 / 2048)$ for Level 1
- Strength is function of both password entropy \& system
- Many ways to limit password guessing attack
- 3-strikes and reset password, hang up on bad login attempt...
- Limited password life, but...
- Note that there is not necessarily a time limit
- Many things are trade-offs with help desk costs

Password Entropy

- Entropy is measure of randomness in a password
- Stated in bits: a password with 24 bits of entropy is as hard to guess as a 24 bit random number
- The more entropy required in the password, the more trials the system can allow
- It's easy to calculate the entropy of a system generated random password
- But users can't remember these
- Much harder to estimate the entropy of user chosen passwords
- Composition rules and dictionary rules may increase entropy
— NIST estimates of password entropy

Very Rough Password Entropy Estimate

Knowledge Based Authentication (KBA)

- Can we just ask questions to authenticate users?
- People do it now
- "Walk-in" customers, real business need
- It's the age of instant gratification
- Similar to ID proofing process, but without closing the loop
- Could view KBA as similar to passwords
- Only these passwords are not very secret
- Valid claimant might not know them all
- How can we quantify KBA, what are the standards?

KBA: some questions

- What is a reasonable model for KBA?
- What are the functions and features of each component?
- What are the security implications of the components?
- For Users:
- How much confidence do you need? Can KBA get there?
- What are the information sources and how do we evaluate them?
- How accurate are the sources?
- What are the Mechanisms and Metrics?
- How do we score responses and what does a score mean?
- What can we standardize?

Questions

