NIST E-Authentication Guidance: Can we add KBA?

NIST KBA Symposium Feb. 9, 2004

Bill Burr william.burr@nist.gov

Information Technology Laboratory

Computer Security Division

NIST E-Authentication Tech Guidance

• OMB Guidance to agencies on E-Authentication

- OMB Memorandum M-04-04, E-Authentication Guidance for Federal Agencies, Dec. 16, 2003
 - http://www.whitehouse.gov/omb/memoranda/fy04/m04-04.pdf
- About identity authentication, not authorization or access control
- NIST SP800-63: Recommendation for Electronic Authentication
 - Companion to OMB e-Authentication guidance
 - Draft for comment at: <u>http://csrc.nist.gov/eauth</u>
 - Comment period ends: March 15
 - Covers conventional token based remote authentication
 - Does not cover Knowlege Based Authentication (KBA)

Assurance Levels

- OMB guidance defines 4 assurance levels
 - Level 1 little or no confidence in asserted identity's validity
 - Level 2: Some confidence in asserted identity's validity
 - Level 3: High confidence in asserted identity's validity
 - Level 4: Very high confidence in asserted identity's validity
- Needed assurance level determined for each type of transaction by the risks and consequences of authentication error with respect to:
 - Inconvenience, distress & damage to reputation
 - Financial loss
 - Harm to agency programs or reputation
 - Civil or criminal violations
 - Personal safety

Technical Guidance Constraints

- Technology neutral (if possible)
 - Required (if practical) by e-Sign, Paperwork Elimination and other laws
 - Premature to take sides in web services wars
 - Difficult: many technologies, apples and oranges comparisons
- Practical with COTS technology
 - To serve public must take advantage of existing solutions and relationships
- Only for remote network authentication
 - Not in person, therefore not about biometrics
- Only about identity authentication
 - Not about attributes, authorization, or access control
 - This is inherited from OMB guidance
 - Agency owns system & makes access control decisions

Personal Authentication Factors

- Something you know
 - A password
- Something you have: a token
 - for remote authentication typically a key
 - Soft token: a copy on a disk drive
 - Hard token: in a special hardware cryptographic device
- Something you are
 - A biometric
 - But biometrics don't work well in remote authentication protocols, because you can't keep a biometric secret

Remote Authentication Protocols

- Conventional, secure, remote authentication protocols all depend on proving possession of some secret "token"
- Remote authentication protocols assume that you can keep a secret
 - Private key
 - Symmetric key
 - Password
- Can be "secure" against defined attacks if you keep the secret
 - Amount of work required in attack is known
 - Make the amount of work work impractically large
 - Hard for people to remember passwords that are "strong" enough to make the attack impractical

Multifactor Remote Authentication

- The more factors, the stronger the authentication
- Multifactor remote authentication typically relies on a cryptographic key
 - Key is protected by a password or a biometric
 - To activate the key or complete the authentication, you need to know the password, or poses the biometric
 - Works best when the key is held in a hardware device (a "hard token")
 - Ideally a biometric reader is built into the token, or a password is entered directly into token

E-Authentication Model

- A claimant proves his/her identity to a verifier by proving possession of a token, possibly in conjunction with electronic credentials that bind the identity and the token. The verifier may then inform a relying party of the claimant's identity with an assertion. The claimant got his/her token and credentials from a Credentials Service Provider (CSP), after proving his identity to a Registration Authority (RA). The roles of the verifier, relying party, CSP and RA may be combined in various combinations.
 - Claimant: Wants to prove his or her identity
 - *Electronic credentials:* Bind an identity or attribute to a token or something associated with a claimant
 - Token: Secret used in an authentication protocol
 - Verifier: verifies the claimant's identity by proof of possession of a token
 - Relying party: Relies on an identity
 - Assertion: Passes information about a claimant from a verifier to a relying party
 - Credentials Service Provider (CSP): Issues electronic credentials and registers or issues tokens
 - Registration Authority (RA): Identity proofs the subscriber

Tokens

- Hard token
 - Cryptographic key in a hardware device
 - FIPS 140 level 2, with level 3 physical security
 - Key is unlocked by password or biometrics
- Soft token
 - Cryptographic key encrypted under password
 - FIPS 140 Level 1 or higher crypto module
- One-time password device (1TPD)
 - Symmetric key in a hardware device with display FIPS 140 level 1
 - Generates password from key plus time or counter
 - User typically inputs password through browser
- Zero Knowledge Password
 - Strong password used with special "zero knowledge" protocol
- Password
 - Password or PIN with conventional protocol

Token Type by Level

Assurance Level

Allowed Token Types	1	2	3	4
Hard crypto token	\checkmark	\checkmark	\checkmark	\checkmark
Soft crypto token	\checkmark	\checkmark	\checkmark	
Zero knowledge password	\checkmark	\checkmark	\checkmark	
One-time Password Device	\checkmark	\checkmark	\checkmark	
Strong password	\checkmark	\checkmark		
PIN	\checkmark			

Protections by Level

Assurance Level

	1	2	3		4
Protection Against			Soft/ZKP	1TPD	
Eavesdropper		\checkmark	\checkmark	\checkmark	\checkmark
Replay	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
On-line guessing	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Verifier Impersonation			\checkmark	\checkmark	\checkmark
Man-in-the-middle			\checkmark	*	\checkmark
Session Hijacking			\checkmark		

* Protection for shared secret only

Auth. Protocol Type by Level

Assurance Level

Authentication Protocol Types	1	2	3	4
Private key PoP	\checkmark	\checkmark	\checkmark	\checkmark
Symmetric key PoP	\checkmark	\checkmark	\checkmark	\checkmark
Zero knowledge password	\checkmark	\checkmark	\checkmark	
Tunneled password	\checkmark	\checkmark		
Challenge-reply password	\checkmark			

ID Proofing

Level 1

- Self assertion, minimal records
- Level 2

- On-line, more or less instant gratification may be possible

• Close the loop by mail, phone or (possibly) e-mail

Level 3

- in-person registration not required

- Close the loop by mail or phone
- Level 4
 - In person proofing
 - Record a biometric
 - Can later prove who got the token
 - Consistent with FICC Common Certificate Policy

PKI & E-Auth

- PKI solutions widely available
 - Can use TLS with client certs. for levels 3 & 4
- May be the predominant solution for levels 3 & 4 in gov.
 - Federal Identity Credentialing Committee
 - Common Credential and Federal Identity Card
 - Common certificate policy and shared service providers
 - Gov. Smart Card Interoperability Standard (GSC-IS)
- Fed. Bridge CA and Fed. Policy Authority are PKI vehicle
- Non-PKI level 3 & 4 solutions
 - One-time password devices in common use can meet level 3
 - Cell phones could be a good 1TPD platform
 - Zero knowledge passwords for level 3 not widely implemented
 - Level 4 could be done with symmetric key tokens

Passwords

Password is a secret character string you commit to memory.
— Secret and memory are the key words here

- As a practical matter we often do write our passwords down
- A password is really a (weak) key
 People can't remember good keys
- We all live in Password Hell too many passwords
 And they try to make us change them all the time
- In E-auth we're only concerned with on-line authentication
 Assume that the verifier is secure and can impose rules to detect or limit attacks
- What is the "strength" of a password?

Password Strength

- Over the life of the password the probability of an attacker with no a priori knowledge of the password finding a given user's password by an in-band attack shall not exceed
 - one in 2¹⁶ (1/65,563) for Level 2

— one in 2¹¹ (1/2048) for Level 1

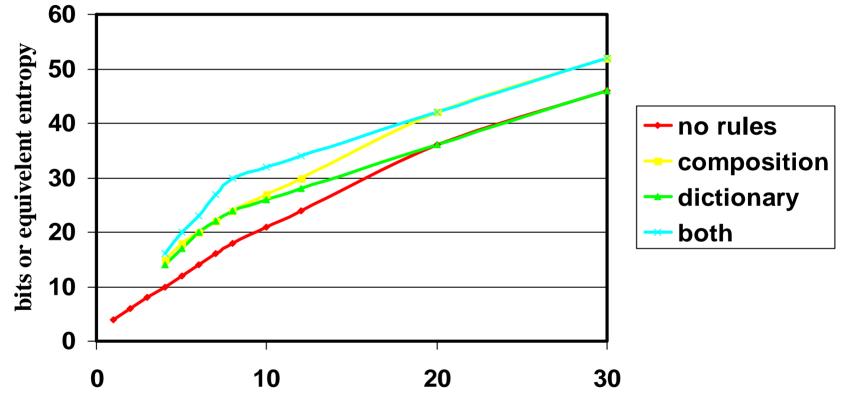
- Strength is function of both password entropy & system
- Many ways to limit password guessing attack
 - 3-strikes and reset password, hang up on bad login attempt...
 - Limited password life, but...
 - Note that there is not necessarily a time limit
 - Many things are trade-offs with help desk costs

Password Entropy

Entropy is measure of randomness in a password

- Stated in bits: a password with 24 bits of entropy is as hard to guess as a 24 bit random number
- The more entropy required in the password, the more trials the system can allow

It's easy to calculate the entropy of a system generated random password


- But users can't remember these

Much harder to estimate the entropy of user chosen passwords

- Composition rules and dictionary rules may increase entropy
- NIST estimates of password entropy

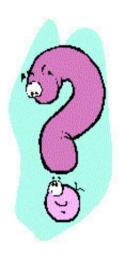
Very Rough Password Entropy Estimate

password length in characters

Knowledge Based Authentication (KBA)

• Can we just ask questions to authenticate users?

- People do it now
- "Walk-in" customers, real business need
 - It's the age of instant gratification
- Similar to ID proofing process, but without closing the loop
- Could view KBA as similar to passwords
 - Only these passwords are not very secret
 - Valid claimant might not know them all
- How can we quantify KBA, what are the standards?


KBA: some questions

• What is a reasonable model for KBA?

- What are the functions and features of each component?
- What are the security implications of the components?
- For Users:
 - How much confidence do you need? Can KBA get there?
- What are the information sources and how do we evaluate them?
 How accurate are the sources?
- What are the Mechanisms and Metrics?
- How do we score responses and what does a score mean?
- What can we standardize?

Questions

